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Résumé en français 

La tarification du carbone couvrira bientôt un cinquième des émissions mondiales. Les entreprises 

doivent s'attendre à une réglementation toujours plus intense (1 900 textes législatifs sur le climat 

dans le monde, dont les deux tiers ont été adoptés au cours des dix dernières années), généralement 

sous l'impulsion des parties prenantes et des actionnaires activistes. Compte tenu de l'impact 

environnemental du transport de marchandises, comment un responsable logistique peut-il 

contribuer à l'effort de réduction de ces émissions : 28% des émissions totales de gaz à effet de serre 

aux Etats-Unis et 30% dans l'Union européenne, le transport routier représentant respectivement 

82% et 72% de ces totaux? 

Dans cette recherche, nous montrons comment un planificateur de transport logistique optimise les 

déplacements à effectuer tout en minimisant les émissions de gaz à effet de serre dans un cadre 

dynamique. Aujourd'hui, les chaînes d'approvisionnement doivent internaliser l'impact du transport 

sur l'environnement dans leurs modèles de coûts. Les gestionnaires doivent tenir compte de 

l'ensemble des émissions de gaz à effet de serre, du coût du transport et de la satisfaction de la 

demande.  

Habituellement, un réseau de chaîne d'approvisionnement implique des centaines de fournisseurs, 

des dizaines d'entrepôts ou d'usines et des centaines de points de livraison. Dans cette étude, nous 

modélisons le double objectif de minimiser la pollution tout en minimisant le coût de transport sous 

la contrainte de la satisfaction de la demande dans le temps pour un nombre quelconque de 

fournisseurs et de points de livraison et un entrepôt central. En utilisant un modèle de théorie du 

contrôle optimal, nous résolvons ce modèle directement lorsque les exigences de transport des 

fournisseurs et la demande des points de vente sont soit déterministes (prévisions de transport à 

horizon glissant), soit décrites par un processus stochastique quelconque dans lequel la demande 

attendue peut ou non varier dans le temps.  

La solution tient compte des coûts de pénalisation pour les livraisons manquées, des coûts des stocks 

et des émissions de gaz à effet de serre qui peuvent varier dans le temps et l'espace. Nous montrons 

comment un gestionnaire peut atténuer les émissions avec des paramètres convenablement définis 

et ainsi choisir les bonnes livraisons, aux bons moments, réduire les émissions de gaz à effet de serre 

et réussir à atteindre le niveau de service de transport attendu tout en réduisant les coûts de 

maintien des stocks. Une illustration numérique présente quelques scénarios. 

L'utilisation de la théorie du contrôle optimal permet aux modèles d'accepter n'importe quelle 

évolution continue (y compris les mouvements browniens géométriques) de la production des 

fournisseurs, de la demande des clients, des pénalités pour ne pas être en mesure d'effectuer le 

transport, etc. Une telle flexibilité dans l'utilisation des entrées et des variables dans les problèmes 

de transport n'a jamais été présentée auparavant dans la recherche scientifique centrée sur le 

transport, à l'exception peut-être des travaux de Tapiero dans les années 1970 (Tapiero 1971, 1972, 



Tapiero et Soliman 1972). Nous prétendons qu'elle sera d'une aide considérable pour les 

gestionnaires ou du moins pour les éditeurs de logiciels logistiques. Contrairement à d'autres 

méthodes de programmation linéaire ou quadratique utilisées dans d'autres cas d'optimisation du 

transport, la solution fournie par la Théorie du Contrôle Optimal est la solution optimale et non une 

approximation, obtenue en une seule étape de calcul. 
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Abstract
Today supply chains must internalize the impact of transport on the environment in their cost models. Therefore, managers 
must reduce green house gas emissions while striving to increase cost efficiency and satisfy demand. Our multi-echelon sup-
ply chain model minimizes pollution and cost while trying to achieve the best match between supply and demand over time. 
Three supply chain network configurations are investigated. Two of them are two-echelon: the first involves several suppliers 
and one warehouse, while the second involves one warehouse and several retail stores. The third network configuration is 
a three-echelon supply chain including multiple suppliers, one distribution center, and several retail stores. Using optimal 
control theory, we derive closed form solutions in such multi-echelon supply chain planning problems with consideration 
of pollution. This approach extends in a new direction the literature in operations and transport management by simultane-
ously addressing demand, supply as well as the greenhouse gas emissions that continuously vary in time and location. The 
proposed model provides a decision maker with the optimal choice of right deliveries, right times, while minimizing green 
house gas emissions. A numerical illustration presents some insights.

Keywords  Pollution regulation · Optimal control theory · Transport optimization · Supply chain

1  Introduction

Carbon pricing will soon cover a fifth of the world’s emis-
sions. Companies should expect ever more intense regula-
tion (1,900 pieces of climate legislation around the world, 
two-thirds were enacted in the past ten years [1]), generally 
driven by stakeholders and activist shareholders [2]. Given 
the environmental impact of freight transportation, how can 
a logistics manager contribute to the effort in reducing such 

emissions 28% of total greenhouse gas emissions in the USA 
and 30% in the European Union, with road transport repre-
senting 82% and 72% of those totals, respectively [3, 4]?

To help logistics managers, as central planning decision 
makers, we present three multi-echelon supply chain mod-
els that jointly optimize the delivered quantities in order to 
satisfy as much as possible the demand while minimizing 
CO2 emissions. Two models consider two-echelon supply 
chains: the first involves several suppliers and one ware-
house, while the second involves one warehouse and several 
retail stores. The third, thereafter referred to as an integrated 
supply chain, is three-echelon and includes multiple suppli-
ers, one distribution center, and several retail stores. Notice-
ably, these three types of supply chain network configura-
tions cover most of the cases that a logistics manager has to 
deal with. We also provide the solutions to two particular 
configurations: (a) a network of suppliers to a warehouse 
when lead times must be taken into account; (b) a network of 
retail stores served by a distribution center when the former 
have an inventory policy in place.

Unlike the conventional models that optimize (often in 
two steps) either pollution emission alone, or in location-
dependent or time-dependent settings, our model, proposed 
for the integrated supply chain, for example, offers a direct 
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and optimal distribution plan that determines the quantity 
to transport from all suppliers and deliver to all retail stores 
connected to a distribution center while trying to reduce 
pollution that continuously vary over time.

Our research fills a gap in the transport and supply chain 
management literature by offering a model that captures 
simultaneously the features of transport scheduling, pollu-
tion control, and demand satisfaction.

After reviewing the literature to which this research con-
tributes in the next section, we present our contribution and 
the model in Sect. 3. The models capture three network con-
figurations: several suppliers and one warehouse in subsec-
tion 3.1, one warehouse and several retail stores in subsec-
tion 3.2, a whole network centered on a single distribution 
center in subsection 3.3. In Sect. 5, we present a numerical 
illustration of the model. Section 4 introduces two extensions: 
one with lead times, another with inventories at retail stores. 
Managerial insights and conclusions are spelt out in Sect. 6.

2 � Literature Review

Our work lies at the interface of supply chain management 
and sustainable operations and is related to several streams 
of literature. The first stream of work is related to co-ordi-
nated logistics and transportation [5–7]. In this stream of 
literature, joint inventory and transportation decisions are 
taken in a single- or two-echelon supply chain. We extend 
this by (i) presenting a model in continuous time, (ii) offer-
ing a three-echelon supply chain with multiple suppliers and 
retailers (iii) incorporating pollution control, (iv) taking into 
account varying pollution in time and location. We consider 
uncapacitated transportation to accommodate the possibility 
of shared transportation initiatives.

The second stream of relevant work stems from sustain-
able transportation that has been devoted to the study of 
transportation decisions from an environmental perspec-
tive [8, 9]. Jabali et al. [8] introduce carbon emissions in 
the context of a time-dependent vehicle routing problem. 
We restrict to supply chain decisions within the context of 
time-dependent emissions as studied in [10]. This context is 
essential from the perspective of air pollution in urban cent-
ers that interfere with air quality. Many cities reduce speed 
limits on their highways and impose restrictions on vehi-
cle entry due to air quality. To incorporate time-dependent 
effects, we model the problem in continuous time using an 
optimal control theory framework.

A third stream of literature combines the objective of 
reducing emissions with network decisions [11–13]. The 
review in [14] illustrates the scarcity of models that study 
the implications of carbon footprint policies on multi-
echelon supply chains. A key distinguishing feature of 

our work is the presentation of a model which, on the one 
hand, enables carbon footprint optimization and, on the 
other hand, provides closed form solutions. Similarly to 
[15], we model demand from stores and supply from sup-
pliers as being continuous in time. This is more appropri-
ate given the growth of e-commerce and fast delivery, on 
the one hand, and the frequent delivery schedules to mini-
mize inventory at warehouses coupled with unexpected 
arrival and transport times on the other. Demand pricing 
[16], transportation, revenue management [17–19], spare 
part supply chains [20], operational systems [21], fleet 
repositioning problems [22] have a long tradition of being 
solved by modeling time as continuous [23].

The fourth stream of literature stems from the popular-
ity of optimal control theory in operations management 
literature as a mathematical optimization tool because of 
the ability to address, usually in closed form, optimiza-
tion problems combining several objectives in time [24]. It 
has been applied for scheduling and planning problems to 
obtain tractable solutions [25], in modeling humanitarian 
operations [26], service operations [27], production inven-
tory systems [28–31], or pollution control [32]. Papier [30] 
uses optimal control methodology to manage production-
inventory decisions in the presence of peak-load electricity 
pricing policies. They optimize joint inventory and back-
ordering decisions amid accumulating electricity costs. We 
are optimizing the product transport allocation decisions 
with accumulating pollution levels in time.

Since the seminal work of Charles Tapiero [33–35], we 
found no research advancement on dynamic transporta-
tion models using optimal control theory. In a way, we 
are rekindling the interest in the work of Charles Tapiero 
given its stark relevance for optimization under pollution 
and service level constraints.

3 � Contribution and Model

Our contribution uses optimal control theory to show how 
best to control CO2 emissions while trying to match the 
demand with the supply. There are several advantages of 
using this theory.

•	 It captures a more accurate representation of existing 
supply chains with planned demand and supply sched-
ules than the traditional or two-stage decision-making 
approaches.

•	 It generates closed-form solutions so as to enable com-
parative statics with reference to the variables of inter-
est, making it possible to identify critical supply chain 
variables in a pollution control exercise.
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•	 It enables the inclusion of time-dependent pollution 
emission, which also provides a context for urban pollu-
tion as pollution peaks at certain hours and seasons [10].

•	 It can accommodate any time-continuous function to 
describe the demand, the supply, the transport cost, as 
well as the environmental impact of transport per loca-
tion.

•	 Both transport cost and CO2 emissions are optimized in 
time and space.

•	 Our models can solve a very large network in number of 
suppliers and retail stores with an insignificant compu-
tational effort, favoring frequent adjustments.

•	 Models using this theory can take into account any open-
loop consideration since they can be re-evaluated to take 
feedback into account.

In all supply chain models, the closed-form solutions allow 
to find the optimal transport schedule in terms of pollution 
and level of demand satisfaction (also referred to as ser-
vice level) given a set of demands over a time horizon. The 
models are generic and are adaptable to almost any form of 
pollution from road transport. As noted above, we consider 
three supply chain network configurations (i) multiple sup-
pliers and a single warehouse, (ii) single warehouse, multiple 
retail stores, and (iii) integrated supply chain network with 
multiple suppliers, a distribution center and multiple retail 
stores expressing demand which has to be fulfilled.

Given that the obtained closed-form solution is not com-
putationally intensive, the supply chain planner can benefit 
from it to optimize jointly transportation schedule and CO2 
emissions. The open-loop problem is dealt with as in [36] by 
re-evaluating the model as feedback from demand is taken 
into account in the schedule.

We have organized our study as follows. For each of the 
considered supply chains, we provide a closed-form solution. 
We present in subsection 3.1 a network with multiple suppli-
ers and a single warehouse as destination. In subsection 3.2, 
we present the optimal delivery schedule from a single ware-
house to various retail stores. Finally, subsection 3.3 offers 
a three-echelon supply chain model with multiple suppliers, 
one distribution center, and a cluster of retail stores.

3.1 � Multiple Suppliers, Single Warehouse Optimal 
Pick‑up Schedule

We consider a dynamic transportation model that aims at 
finding the optimal transportation schedule to load goods 
from suppliers and deliver them to a single warehouse (or 
a production facility) by minimizing the cost of transpor-
tation, the penalty for not matching the supply with the 
demand, and the amount of CO2 emissions over a planning 
horizon, [0, T]. Obviously, the demand at the level of the 
warehouse represents the aggregated requirements from the 

downstream echelons in the supply chain. We assume that a 
contract quantity is committed between the warehouse and 
each supplier. According to this agreement, any shipped 
quantity from the supplier to the warehouse below or beyond 
the contract quantity is penalized. The contract quantity is 
assumed known, and its determination is beyond the scope 
of this paper. At this level, it is worth noting that each sup-
plier, whenever needed, has enough capacity to provide the 
warehouse with a quantity of product that is greater than the 
contract quantity.

The objective function includes four terms: the first one is 
the transportation cost. The second and third ones describe 
the costs for not matching the shipped quantity with the con-
tract quantity committed with the supplier, and the demand, 
respectively. The fourth term tries to minimize to total 
level of pollution at the end of the planning horizon. CO2 
emissions accumulate through a differential equation that 
accounts for the amount of shipped goods from each supplier 
given its location and natural cleaning rate (for more general 
pollution equations one can see [37–39]).

We summarize the notation used for all models in Table 1.
If we neglect the travel time with respect to the consid-

ered time unit, the objective function to be minimized reads 
as:

subject to

Theorem 1  Let us define:

(1)

min
xi(t),P(t)

N∑
i=1

T

∫
0

ci(t)xi(t)dt +
1

2

N∑
i=1

T

∫
0

�i(t)
(
xi(t) − si(t)

)2
dt

+
1

2

T

∫
0

�(t)

(
N∑
i=1

xi(t) − �(t)

)2

dt + �P(T),

(2)
Ṗ(t) =

N∑
i=1

𝛾i(t)xi(t) − 𝛿PP(t)

P(0) ≥ 0,

xi(t) ≥ 0, i = 1…N, t ∈ [0, T].

Ω(t) ∶=

⎛⎜⎜⎜⎝

�1(t) + �(t) �(t) … �(t)

�(t) �2(t) + �(t) … �(t)

… … … …

�(t) �(t) … �N(t) + �(t)

⎞⎟⎟⎟⎠
,

X(t) ∶=

⎛⎜⎜⎜⎝

x1(t)

x2(t)

…

xN(t)

⎞⎟⎟⎟⎠
, C(t) ∶=

⎛⎜⎜⎜⎝

c1(t)

c2(t)

…

cN(t)

⎞⎟⎟⎟⎠
,
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Suppose that (component-wise) S(t) ≥ C(t) + �e�P(t−T)Γ(t) , 
Γ(t) ≥ 0 , and Ω−1(t) ≥ 0 for any t ∈ [0, T].

Then, the optimal solution to the optimal control model 
is the pair (X(t), P(t)) given by:

and are therefore always positive.

The proof of this and other theorems are relegated to .

Remark 1  The expression of P can be seen as a first-order 
Taylor linear approximation of any nonlinear model around 
the pollution-free equilibrium. Therefore, its validity is 

S(t) ∶=

⎛⎜⎜⎜⎝

s1(t)�1(t) + �(t)�(t)

s2(t)�2(t) + �(t)�(t)

…

sN(t)�N(t) + �(t)�(t)

⎞⎟⎟⎟⎠
, Γ(t) ∶=

⎛⎜⎜⎜⎝

�1(t)

�2(t)

…

�N(t)

⎞⎟⎟⎟⎠
.

(3)X(t) = Ω(t)−1
[
S(t) − C(t) − �e�P(t−T)Γ(t)

]
,

(4)P(t) = e−�Pt
⎡⎢⎢⎣

t

∫
0

Γ(s)TX(s)e�Psds + P0

⎤⎥⎥⎦
,

general as long as it is used for local dynamic analysis. More 
general optimal control models involving multi-objective 
criteria, spatial dimension, stochastic shock, uncertainty, 
abatement policy are presented in [40–43].

Remark 2  Suppose that the equation of P is subject to an 
exogenous factor W(t), driven by a classical Wiener process 
as in the following expression:

where P0 is a deterministic value, all time-dependent param-
eters are deterministic, and � is the stochastic process volatil-
ity. In this case, thanks to the linearity of the equation with 
respect to P(t), we proceed by taking the expected value of 
both sides, and calculate the expected value of the optimal 
pollution path as follows:

the solution of which is then given by

(5)

dP(t) =

(
N∑
i=1

�i(t)xi(t) − �PP(t)

)
dt + �P(t)dW(t), P(0) = P0

(6)
d�((P(t))

dt
=

N∑
i=1

�i(t)xi(t) − �P�((P(t)),

Table 1   Notations of all models

N number of suppliers,
M number of retail stores,
T length of the planning horizon,
ci(t) unit transportation cost from supplier i to the warehouse/distribution center at time t,
c̄j(t) unit transportation cost from the warehouse/distribution center to retail store j at time t,
xi(t) quantity shipped from supplier i to the warehouse/distribution center at time t,
si(t) contract quantity committed with supplier i at time t,
�j(t) demand at the retail store j at time t,
�(t) demand at the warehouse/distribution center at time t,
𝜉(t) quantity of product available at the warehouse at time t,
�i(t) penalty for not matching the shipped quantity with the contract quantity committed with supplier i at time t,
𝛼j(t) penalty for not matching the delivered quantity to retail store j with the demand at time t,
�(t) penalty for not matching the total shipped quantity from the suppliers with the demand of the warehouse/distribution center at time t,
𝛽(t) penalty for not matching the total shipped quantity from the suppliers to the total delivered quantity to the retail stores at time t,
� , 𝜃̄ trade-off parameter which states the importance of the pollution level at t = T ,
P(t) total air pollution emission in time t,
�i(t) air pollution emission per unit of product transported between location i and the warehouse/distribution center at time t,
𝛾j(t) air pollution emission per unit of product transported between the warehouse/distribution center and the retail store j at time t,
�P , 𝛿P depreciation rate of CO2 emissions, that is the natural cleaning rate of the level of pollution,
yj(t) quantity of product to be delivered from the warehouse/distribution center to the retail store j,
L lead time,
�j(t) amount of inventory at the retail store j that is subtracted to the demand at time t. The expression ∫ T

0
𝜂j(t)dt = 𝜂̄j describes the total 

inventory available at the jth retail store at the beginning of the considered planning horizon (i.e., t = 0 ). This inventory results from 
the decisions made while running the model for the previous planning horizon.
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To compute the optimal solution, the supply chain plan-
ner must input the planned demand which triggers the deliv-
ery/transport requirements from the suppliers. The delivered 
quantity from one supplier should be matched as much as 
possible with the committed contract quantity. Any mis-
match between the delivered quantity and the demand, and 
the delivered quantity by one supplier and the contracted 
quantity is penalized. As time goes by, she uses the rolling 
horizon forecast to recalculate the optimal solution.

3.2 � Single Warehouse, Multiple Retail Stores 
Optimal Delivery Schedule

In this section, we determine the optimal delivery schedule 
of goods from one warehouse to M different retail stores (or 
delivery points). The proposed model aims at minimizing an 
objective function composed by four different terms, namely 
the cost of delivery (transportation cost), the penalty for not 
matching the demand with the supply in the retail stores or 
at the warehouse, and the total level of pollution at T. As in 
the previous case, if we neglect the travel time with respect 
to the considered time unit, the model reads as:

subject to

Similarly to the previous case, one can prove that the optimal 
solution is provided by the following expressions.

Theorem 2  Let us define:

(7)�((P(t)) = e−�Pt
⎡
⎢⎢⎣

t

∫
0

Γ(s)TX(s)e�Psds + P0

⎤
⎥⎥⎦
.

(8)

min
yj(t),P(t)

M∑
j=1

T

∫
0

c̄j(t)yj(t)dt +
1

2

M∑
j=1

T

∫
0

𝛼j(t)
(
yj(t) − 𝜉j(t)

)2
dt

+
1

2

T

∫
0

𝛽(t)

(
M∑
j=1

yj(t) − 𝜉(t)

)2

dt + 𝜃̄P(T),

(9)

Ṗ(t) =

M∑
j=1

𝛾j(t)yj(t) − 𝛿PP(t),

P(0) ≥ 0,

yj(t) ≥ 0, j = 1…M, t ∈ [0, T].

Suppose that (component-wise) S̄(t) ≥ C̄(t) + 𝜃̄e𝛿P(t−T)Γ̄(t) , 
Γ̄(t) ≥ 0 , and Ω̄−1(t) ≥ 0 for any t ∈ [0, T].

Then, the optimal solution to the optimal control model 
is the pair (Y(t), P(t)) given by:

which are always positive.

The supply chain planner can determine the optimal 
delivery schedule by plugging in the model the planned 
demand from retail stores. Given that the model accepts 
varying pollution in time and location, she can measure and 
control the corresponding pollution and transport service 
level according to the penalties that she keys in as exogenous 
parameters.

3.3 � Integrated Model

Having presented two models: one where multiple suppliers 
deliver to a single warehouse and one where one warehouse 
delivers to multiple retail stores (or delivery points), we 
now consider a three-stage supply chain composed of sev-
eral suppliers, a distribution center, and a cluster of retail 
stores. The supply chain planner should decide on the 
quantity of product to pick up from a pre-selected panel of 

Ω̄(t) ∶=

⎛⎜⎜⎜⎝

𝛼̄1(t) + 𝛽(t) 𝛽(t) … 𝛽(t)

𝛽(t) 𝛼̄2(t) + 𝛽(t) … 𝛽(t)

… … … …

𝛽(t) 𝛽(t) … 𝛼̄M(t) + 𝛽(t)

⎞⎟⎟⎟⎠
,

Y(t) ∶=

⎛⎜⎜⎜⎝

y1(t)

y2(t)

…

yM(t)

⎞⎟⎟⎟⎠
, C̄(t) ∶=

⎛⎜⎜⎜⎝

c̄1(t)

c̄2(t)

…

c̄M(t)

⎞⎟⎟⎟⎠
,

S̄(t) ∶=

⎛⎜⎜⎜⎝

𝜉1(t)𝛼̄1(t) + 𝛽(t)𝜉(t)

𝜉2(t)𝛼̄2(t) + 𝛽(t)𝜉(t)

…

𝜉M(t)𝛼̄M(t) + 𝛽(t)𝜉(t)

⎞⎟⎟⎟⎠
, and Γ̄(t) ∶=

⎛⎜⎜⎜⎝

𝛾̄1(t)

𝛾̄2(t)

…

𝛾̄M(t)

⎞⎟⎟⎟⎠
.

(10)Y(t) = Ω̄(t)−1
[
S̄(t) − C̄(t) − 𝜃̄e𝛿P(t−T)Γ̄(t)

]
,

(11)P(t) = e−𝛿Pt
⎡⎢⎢⎣

t

∫
0

Γ̄(s)TY(s)e𝛿Psds + P
0

⎤⎥⎥⎦
,
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suppliers in order to satisfy as much as possible the demand 
at different retail stores. The products are shipped from the 
suppliers and cross-docked at a distribution center before 
being delivered to retail stores. The optimization function 
is then:

subject to

Theorem 3  Let us define:

with

(12)

min
xi(t),yj(t),P(t)

N∑
i=1

T

∫
0

ci(t)xi(t)dt +

M∑
j=1

T

∫
0

c̄j(t)yj(t)dt

+
1

2

N∑
i=1

T

∫
0

𝛼i(t)
(
xi(t) − si(t)

)2
dt

+
1

2

M∑
j=1

T

∫
0

𝛼j(t)
(
yj(t) − 𝜉j(t)

)2
dt

+
1

2

T

∫
0

𝛽(t)

(
N∑
i=1

xi(t) − 𝜉(t)

)2

dt

+
1

2

T

∫
0

𝛽(t)

(
M∑
j=1

yj(t) −

N∑
i=1

xi(t)

)2

dt

+ 𝜃P(T).

(13)

Ṗ(t) =

N∑
i=1

𝛾i(t)xi(t) +

M∑
j=1

𝛾j(t)yj(t) − 𝛿PP(t),

P(0) ≥ 0,

xi(t) ≥ 0, i = 1…N, t ∈ [0, T],

yj(t) ≥ 0, j = 1…M, t ∈ [0, T].

(14)Ω1(t) ∶=

(
A(t) B(t)

C(t) D(t)

)

(15)

A(t) ∶=

⎛⎜⎜⎜⎜⎜⎝

𝛼1(t) + 𝛽(t) + 𝛽(t) 𝛽(t) + 𝛽(t) … 𝛽(t) + 𝛽(t)

𝛽(t) + 𝛽(t) 𝛼2(t) + 𝛽(t) + 𝛽(t) … 𝛽(t) + 𝛽(t)

… … … …

𝛽(t) + 𝛽(t) 𝛽(t) + 𝛽(t) … 𝛼N (t) + 𝛽(t) + 𝛽(t)

⎞⎟⎟⎟⎟⎟⎠

,

(16)B(t) ∶=

⎛⎜⎜⎜⎝

−𝛽(t) … − 𝛽(t)

−𝛽(t) … − 𝛽(t)

… … …

−𝛽(t) … − 𝛽(t)

⎞⎟⎟⎟⎠
,

Suppose that (component-wise) S1(t) ≥ C1(t) + �e�P(t−T)

Γ1(t) , Γ1(t) ≥ 0 , and Ω1−1(t) ≥ 0 for any t ∈ [0, T].

Then, the optimal solution to the optimal control model 
is the pair (U(t), P(t)) given by:

which are always positive.

4 � Model Extensions

The next two subsections represent interesting variations on 
the first and the third proposed models, respectively. The 
first extension considers a delivery lead time in the multiple 
supplier, single warehouse pick-up scheduling, while the 
second one accounts for inventory at retail stores.

(17)C(t) ∶=

⎛
⎜⎜⎝

−𝛽(t) − 𝛽(t) … − 𝛽(t)

… … … …

−𝛽(t) − 𝛽(t) … − 𝛽(t)

⎞
⎟⎟⎠
,

(18)D(t) ∶=

⎛
⎜⎜⎝

𝛼̄1(t) + 𝛽(t) … 𝛽(t)

𝛽(t) … 𝛽(t)

𝛽(t) … 𝛼̄M(t) + 𝛽(t)

⎞
⎟⎟⎠
,

(19)U(t) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(t)

x2(t)

…

xN(t)

y1(t)

y2(t)

…

yM(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C1(t) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1(t)

c2(t)

…

cN(t)

c̄1(t)

c̄2(t)

…

̄cM(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(20)

S1(t) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1(t)𝛼1(t) + 𝜉(t)𝛽(t)

s2(t)𝛼2(t) + 𝜉(t)𝛽(t)

…

sN(t)𝛼N(t) + 𝜉(t)𝛽(t)

𝛼̄1(t)𝜉1(t)

𝛼̄2(t)𝜉2(t)

…

𝛼̄M(t)𝜉M(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and Γ1(t) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛾1(t)

𝛾2(t)

…

𝛾N(t)

𝛾̄1(t)

𝛾̄2(t)

…

𝛾̄M(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(21)U(t) = Ω1(t)−1
[
S1(t) − C1(t) − �e�P(t−T)Γ1(t)

]
,

(22)P(t) = e−�Pt
⎡⎢⎢⎣

t

∫
0

Γ1(s)TU(s)e�Psds + P
0

⎤⎥⎥⎦
,
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4.1 � Multiple Suppliers, Single Warehouse Pick‑up 
Scheduling with Lead Time

In this model formulation, we include a constant delivery 
lead time L in the first model. We suppose that the exog-
enous parameters ci(t) , �i(t) and �(t) are constant over time. 
The model reads as:

subject to

The following result characterizes the optimal solution of 
the above model with lead time.

Theorem 4  Let Ω , X(t), C(t), and Γ(t) be as defined in Theo-
rem 1, whereas

Suppose that SL(t) ≥ C + �e�P(t−T+L)Γ(t) , Γ(t) ≥ 0 , and 
Ω ≥ 0 . Then, the optimal solution to the optimal control 
model where c, �i , � , and delivery lead time L are constant 
in time is the pair (X(t), P(t)) given by:

(23)

min
xi(t),P(t)

N∑
i=1

T−L

∫
0

cixi(t)dt +
1

2

N∑
i=1

T−L

∫
0

�i
(
xi(t) − si(t)

)2
dt

+
1

2

T−L

∫
0

�

(
N∑
i=1

xi(t) − �(t + L)

)2

dt + �P(T − L),

(24)
Ṗ(t) =

N∑
i=1

𝛾i(t)xi(t) − 𝛿PP(t),

P(0) ≥ 0,

xi(t) ≥ 0, i = 1…N, t ∈ [0,T − L].

SL(t) ∶=

⎛⎜⎜⎜⎝

s1(t)�1 + �(t + L)�

s2(t)�2 + �(t + L)�

…

sN(t)�N + �(t + L)�

⎞⎟⎟⎟⎠
.

(25)

X(t) =

{
Ω−1

[
SL(t) − C − �e�P(t−T+L)Γ(t)

]
, t ∈ [0, T − L],

0 t ∈ [T − L, T],

(26)

P(t) =

⎧⎪⎨⎪⎩

e−�Pt
�∫ t

0
Γ(s)TX(s)e�Psds + P0

�
, t ∈ [0, T − L],

e−�Pt
�∫ T−L

0
Γ(s)TX(s)e�Psds + P0

�
, t ∈ [T − L, T].

4.2 � An Integrated Model with Inventory

Here, we consider an inventory available in each retail store 
at the beginning of the considered planning horizon and an 
inventory policy which is exogenously given. More spe-
cifically, this policy will define how this inventory will be 
deployed over time and hence contribute to achieve a better 
match between the supply and the demand at each retail 
store.

The optimization problem reads:

subject to

It is worth noting that the distribution center is a cross-
docking platform. This justifies why the model does not 
include any inventory at the distribution center at the begin-
ning of the planning horizon. Furthermore, as mentioned 
above, the inventory level at each retail store at the begin-
ning of a given planning horizon can be determined from 
the decisions taken while running the proposed model 

(27)

min
xi(t),yj(t),P(t)

N∑
i=1

T

∫
0

ci(t)xi(t)dt +

M∑
j=1

T

∫
0

c̄j(t)yj(t)dt

+
1

2

N∑
i=1

T

∫
0

𝛼i(t)
(
xi(t) − si(t)

)2
dt

+
1

2

M∑
j=1

T

∫
0

𝛼j(t)
(
yj(t) − (𝜉j(t) − 𝜂j(t))

)2
dt

+
1

2

T

∫
0

𝛽(t)

(
N∑
i=1

xi(t) −

M∑
j=1

(𝜉j(t) − 𝜂j(t))

)2

dt

+
1

2

T

∫
0

𝛽(t)

(
M∑
j=1

yj(t) −

N∑
i=1

xi(t)

)2

dt

+ 𝜃P(T),

(28)

Ṗ(t) =

N∑
i=1

𝛾i(t)xi(t) +

M∑
j=1

𝛾j(t)yj(t) − 𝛿PP(t),

P(0) ≥ 0,

xi(t) ≥ 0 i = 1…N, t ∈ [0, T],

yj(t) ≥ 0 j = 1…M, t ∈ [0, T].
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for the preceding planning horizon. From this perspec-
tive, running the model for k successive planning horizons 
[0, T1], [T1, T2]...[Tk−1, Tk] , will allow to build a plan over 
[0, Tk] that accounts for the intertemporal relationships in 
inventories.

Theorem 5  Let Ω1(t) , U(t), C1(t), Γ1(t) be defined as in 
Theorem 3 and

Suppose that (component-wise) S11(t) ≥ C1(t) + �e�P(t−T)

Γ1(t) , Ω1(t)−1 ≥ 0 , and Γ1(t) ≥ 0 for any t ∈ [0, T].

Then, the optimal solution to the optimal control model 
is the pair (U(t), P(t)) given by:

which are always positive.

(29)S11(t) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1(t)𝛼1(t) + 𝛽(t)
∑M

j=1
(𝜉j(t) − 𝜂j(t))

s2(t)𝛼2(t) + 𝛽(t)
∑M

j=1
(𝜉j(t) − 𝜂j(t))

…

sN(t)𝛼N(t) + 𝛽(t)
∑M

j=1
(𝜉j(t) − 𝜂j(t))

𝛼̄1(t)(𝜉1(t) − 𝜂1(t))

𝛼̄2(t)(𝜉2(t) − 𝜂2(t))

…

𝛼̄M(t)(𝜉M(t) − 𝜂M(t))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(30)U(t) = Ω1(t)−1
[
S11(t) − C1(t) − �e�P(t−T)Γ1(t)

]
,

(31)P(t) = e−�Pt
⎡⎢⎢⎣

t

∫
0

Γ1(s)TU(s)e�Psds + P
0

⎤⎥⎥⎦
,

5 � Illustrative Examples

We first represent a numerical illustration of the case where 
two suppliers have to supply one warehouse. Afterward, we 
repeat the exercise for the case of a three-stage supply chain 
including multiple suppliers, a central distribution center and 
multiple retail stores, using the integrated model.

We use the parameters’ values provided in [44].

5.1 � One Warehouse, Two Suppliers

Consider the case of a warehouse which has to satisfy 
demand for one item that two suppliers can provide over 
a planning horizon [0,10]. Without loss of generality, let 
�(t) = s1(t) + s2(t) . The CO2 emissions evolution is deter-
ministic and varies in time based on the location of sup-
plier and the shipped quantity. The penalties are fixed over 
all periods with � = 5 and � = 60 . Indeed, in this case, 
the supply chain planner strives to match the supply with 
the demand at the warehouse, from either of the suppli-
ers, while the overall impact of CO2 emissions is mini-
mized. Such a configuration may be used to account for 
the deployed transport mode or route to deliver products 
from each supplier to the warehouse (hence the difference 
in CO2 emissions).

As can be observed from Fig. 1, the level of CO2 emis-
sions for the trajectory between the second supplier and the 
warehouse becomes much more important than from the first 
supplier toward the end of the planning horizon. Therefore, 
more cargo is shipped from supplier 1 rather than supplier 2 
in order to reduce the overall CO2 emissions.

Fig. 1   Evolution over time of shipped quantities from the suppliers vs. the CO2 emission per unit of product transported from supplier i to the 
warehouse, �

i
(t)
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Using the closed-form solution provided in (3)-(4), we 
can also calculate 

the average service level over the planning horizon [0,T] 
using (32) in which, at time t, the service level is the 
ratio between the total supplied quantity and the demand 
expressed by the warehouse.

with � = 5, � = 60

The evolution in time of this ratio is provided in Fig. 2. 
When the CO2 emissions level over the trajectories between 
the suppliers and the warehouse increases, the service level 
drops.

(32)average service level =
1

T

T

∫
0

∑N

i=1
xi(t)

�(t)
dt.

Fig. 2   Service level of two sup-
pliers having to satisfy demand 
at the warehouse under condi-
tions represented in Fig. 1

2 4 6 8 10

0.75

0.80

0.85

0.90

Fig. 3   Envelope of the service 
level over the planning horizon, 
in terms of the penalties � and 𝛼̄



	 X. Brusset et al.

1 3

5.2 � Multiple Suppliers, a Distribution Center, 
and Multiple Retail Stores

In the case of a distribution center but various suppliers and 
stores, the calculation is similar using the result from Theo-
rem 3. In this instance, we used a network of 40 suppliers, 
40 stores and a planning horizon [0,20].

In Fig. 3, we represent the evolution of the service level 
(in percentage) over the considered planning horizon. As 
expected, the penalties � or 𝛼̄ increase, the service level 
increases. Here, we have 𝛽 = 𝛽 = 1 . Note that the maximum 
service level plateaus at 85%: pollution considerations make 
filling demand every period not economical. This changes 
if the penalties increase or pollution trade-off parameter is 
lowered.

6 � Managerial Insights and Conclusion

The present work contributes to the research stream in sup-
ply chain management and sustainability literature with the 
purpose of helping managers in their objective of reducing 
the carbon footprint of their transport schedules while maxi-
mizing service level. In the operations management stream 
of literature, it answers the call expressed in [24] for further 
research into extended cooperation between supply chain 
experts and control engineers to introduce dynamic planning 
and models to improve performance in logistics systems. It 
also provides a multi-echelon supply chain model to study 
carbon footprint for which there is a paucity [14].

As seen in Introduction and already mentioned in [10], 
supply chain managers must incorporate pollution concerns 
in their transportation schedules under service level con-
straints. This becomes especially important as customers’ 
intolerance to delayed delivery [45] and shareholders’ con-
cern about carbon emissions increase.

The three models presented cover a variety of network 
configurations where a manager needs to schedule transport 
to minimize pollution and yet accommodate the supply and 
demand over a given planning horizon. Two extensions of 
the models contemplate lead times and inventory at retail 
stores. In each configuration, thanks to the linearity of the 
proposed models, the effect of exogenous shocks can be con-
trolled by means of the expected value as demonstrated by 
Remark 2.

Further, the advantage of our models is that transport with 
various carbon footprints can be taken into consideration 
as well as the possibility that such footprints may evolve in 
time. As the penalties are exogenous to the models, the sup-
ply chain planner can further tweak them under various sce-
narios to understand the impact of missed, delayed, or antic-
ipated pickups and deliveries on emissions. The solution 

provided takes into account the planned air pollution in each 
period and in each location to be traversed. If more than one 
warehouse has to be taken into account (most networks do 
have several distribution centers), as many models as there 
are warehouses can be elaborated since warehouses serve 
specific disjoined sets of suppliers and delivery end-points.

The use of optimal control theory enables the models to 
accept any continuous evolution of demand, contract quan-
tity and air pollution emissions. Such flexibility in the use of 
inputs and variables in transport problems has never before 
been presented in scientific research centered on transport 
with the possible exception of Tapiero’s work in the 1970s 
[33–35]. Contrary to various other linear or quadratic pro-
gramming methods used in other instances of transport opti-
mization, the solution provided using optimal control theory 
is the optimal one and not an approximation and achieved in 
a single stage calculation (without iterations).

We purport that our work will be a considerable help to 
managers or at least to editors of logistic software. We antic-
ipate that the use of the models will include the sensitivity 
analyses in scenario of varying penalties for missing pickups 
or deliveries, of pollution impact varying in time and place, 
of varying suppliers or customers’ volumes.

As mentioned in Introduction, stakeholders require 
that supply chain managers measure the carbon footprint 
of their logistic operations and reduce it. Strategies which 
still consider efficiency and cost are out if externalities are 
not considered. Nowadays, managers have access to more 
and better data about all of pollution levels, regulations in 
various regions, as well as transport mode emissions used 
generate. At times, cities or entire regions are cloaked in 
particle-filled air due windless periods. Transport in such 
zones may be curtailed or limited to certain vehicle types 
(such as electric vehicles). We also expect authorities to tax 
or otherwise regulate transport emissions through cap-and-
trade schemes. In both cases, our methods allow the manager 
to reschedule the transport plan correspondingly. This will 
allow for much better overall control of the footprint if the 
methods presented here are put to use. We expect such big 
supply networks as big retailers, logistic service providers, 
and automotive assembly firms to be interested.

There are various limitations to our work. The foremost 
one is that the models do not account for milk runs when 
collecting or delivering cargo: transport is considered to 
consist of single vehicle pick-up and delivery with single 
origin and destination. Another limitation is the ability of 
managers to understand the models and their use. The devel-
opment of a new body of prescriptive knowledge and norma-
tive models does not warrant its use by practitioners [46]. 
In particular, it must be judged according to its pragmatic 
validity and its practical relevance [47]. Its adoption requires 
the redesign of an organization and its translation in opera-
tors’ roles and routines [48, 49]. We expect that examples of 
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such implementations of our proposed methods in real-life 
settings will also be presented and discussed.

Appendix

Proof of Theorem 1

Proof  This is the proof of Theorem 1. The Hamiltonian 
associated with the problem is:

The optimality conditions read as:

The differential equation for � with terminal condition 
�(T) = � , namely

is linear and can be easily solved, leading to �(t) = �e�P(t−T) . 
If we plug the expression of � into the maximum principle, 
we get:

(33)

H(x1(t), x2(t),… , xN(t),P(t), �(t))

=

N∑
j=1

cj(t)xj(t) +
1

2

N∑
j=1

�j(t)
(
xj(t) − sj(t)

)2

+
1

2
�(t)

(
N∑
j=1

xj(t) − �(t)

)2

dt

+ �(t)

[
N∑
j=1

�j(t)xj(t) − �PP(t)

]

(34)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕H

𝜕xi
= ci(t) + 𝛼i(t)

�
xi(t) − si(t)

�

+ 𝛽(t)

�
N�
j=1

xj(t) − 𝜉(t)

�
+ 𝜆(t)𝛾i = 0, i = 1…N,

𝜆̇(t) = −
𝜕H

𝜕P
= 𝛿P𝜆(t),

Ṗ(t) =

N�
i=1

𝛾i(t)xi(t) − 𝛿PP(t),

P(0) = P0 ≥ 0,

𝜆(T) = 𝜃.

(35)𝜆̇(t) = 𝛿P𝜆(t),

(36)

�i(t)xi(t) + �(t)

N∑
j=1

xj(t) = −ci(t) − ��ie
�P(t−T) + si(t)�i(t) + �(t)�(t).

If we define the matrix

and the vectors

This equation can be written in vectorial form as:

and, using the fact that the matrix �(�) is invertible, we get

The equation of P boils down to:

and this differential equation has a closed form given by:

▪

Proof of Theorem 2

The proof of this theorem is very similar to the one of Theo-
rem 1 and is therefore omitted.

Proof of Theorem 3

The Hamiltonian associated with the problem is:

Ω(t) ∶=

⎛⎜⎜⎜⎝

�1(t) + �(t) �(t) … �(t)

�(t) �2(t) + �(t) … �(t)

… … … …

�(t) �(t) … �N(t) + �(t)

⎞⎟⎟⎟⎠

X(t) ∶=

⎛⎜⎜⎜⎝

x1(t)

x2(t)

…

XN(t)

⎞⎟⎟⎟⎠
, C(t) ∶=

⎛⎜⎜⎜⎝

c1(t)

c2(t)

…

cN(t)

⎞⎟⎟⎟⎠
,

S(t) ∶=

⎛⎜⎜⎜⎝

s1(t)�1(t) + �(t)�(t)

s2(t)�2(t) + �(t)�(t)

…

sN(t)�N(t) + �(t)�(t)

⎞⎟⎟⎟⎠
, and Γ(t) ∶=

⎛⎜⎜⎜⎝

�1(t)

�2(t)

…

�N(t)

⎞⎟⎟⎟⎠
.

(37)Ω(t)X(t) = −C(t) − �e�P(t−T)Γ(t) + S(t)

(38)
X(t) = −Ω(t)−1C(t) − �e�P(t−T)Ω(t)−1Γ(t) + Ω(t)−1S(t).

(39)Ṗ(t) = Γ(t)TX(t) − 𝛿PP(t)

(40)P(t) = e−�Pt
⎡⎢⎢⎣

t

∫
0

Γ(s)TX(s)e�Psds + P0

⎤⎥⎥⎦
.
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The optimality conditions read as:

The differential equation for � with terminal condition 
�(T) = � , namely

is linear and can be easily solved, leading to �(t) = �e�P(t−T) . 
If we plug the expression of � into the maximum principle, 
we get:

If we define the matrix

(41)

H(x1(t), x2(t),… , xN(t), y1(t), y2(t),… , yM(t),P(t), 𝜆(t))

=

N∑
i=1

ci(t)xi(t) +

M∑
j=1

c̄j(t)yj(t) +
1

2

N∑
i=1

𝛼i(t)
(
xi(t) − si(t)

)2

+
1

2

M∑
j=1

𝛼̄j(t)
(
yj(t) − 𝜉j(t)

)2
+

1

2
𝛽(t)

(
N∑
i=1

xi(t) − 𝜉(t)

)2

+
1

2
𝛽(t)

(
M∑
j=1

yj(t) −

N∑
i=1

xi(t)

)2

+ 𝜆(t)

[
N∑
i=1

𝛾i(t)xi(t) +

M∑
j=1

𝛾̄j(t)yj(t) − 𝛿PP(t)

]
.

(42)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕H

𝜕xi
= ci(t) + 𝛼i(t)

�
xi(t) − si(t)

�
+ 𝛽(t)

�
N�
i=1

xj(t) − 𝜉(t)

�

− 𝛽(t)

�
M�
j=1

yj(t) −

N�
i=1

xi(t)

�
+ 𝜆(t)𝛾i(t) = 0, i = 1…N

𝜕H

𝜕yj
= c̄j(t) + 𝛼̄j(t)

�
yj(t) − 𝜉j(t)

�
+ 𝛽(t)

�
M�
j=1

yj(t) −

N�
i=1

xi(t)

�

+ 𝜆(t)𝛾̄j(t) = 0, i = j…M

𝜆̇(t) = −
𝜕H

𝜕P
= 𝛿P𝜆(t),

Ṗ(t) =

N�
i=1

𝛾i(t)xi(t) +

M�
j=1

𝛾̄j(t)yj(t) − 𝛿PP(t),

P(0) = P0 ≥ 0,

𝜆(T) = 𝜃.

(43)𝜆̇(t) = 𝛿P𝜆(t), 𝜆(T) = 𝜃,

(44)

𝛼i(t)xi(t) + (𝛽(t) + 𝛽(t))

N∑
i=1

xi(t) − 𝛽(t)

M∑
j=1

yj(t) = −ci(t)

− 𝜃𝛾i(t)e
𝛿P(t−T) + si(t)𝛼i(t) + 𝜉(t)𝛽(t), i = 1…N

(45)
−𝛽(t)

N∑
i=1

xi(t)+ 𝛼̄j(t)yj(t) + 𝛽(t)

M∑
j=1

yj(t) = −c̄j(t)

− 𝜃𝛾̄j(t)e
𝛿P(t−T) + 𝜉j(t)𝛼̄j(t), j = 1…M.

with

and the vectors

This equation can be written in vectorial form as:

and, using the fact that the matrix ��(�) is invertible, we get

(46)Ω1(t) ∶=

(
A(t) B(t)

C(t) D(t)

)

A(t) ∶=

⎛⎜⎜⎜⎜⎜⎝

𝛼1(t) + 𝛽(t) + 𝛽(t) 𝛽(t) + 𝛽(t) … 𝛽(t) + 𝛽(t)

𝛽(t) + 𝛽(t) 𝛼2(t) + 𝛽(t) + 𝛽(t) … 𝛽(t) + 𝛽(t)

… … … …

𝛽(t) + 𝛽(t) 𝛽(t) + 𝛽(t) … 𝛼N (t) + 𝛽(t) + 𝛽(t)

⎞⎟⎟⎟⎟⎟⎠

,

B(t) ∶=

⎛⎜⎜⎜⎝

−𝛽(t) … − 𝛽(t)

−𝛽(t) … − 𝛽(t)

… … …

−𝛽(t) … − 𝛽(t)

⎞⎟⎟⎟⎠
,

C(t) ∶=

⎛⎜⎜⎝

−𝛽(t) − 𝛽(t) … − 𝛽(t)

… … … …

−𝛽(t) − 𝛽(t) … − 𝛽(t)

⎞⎟⎟⎠
,

D(t) ∶=

⎛⎜⎜⎝

𝛼̄1(t) + 𝛽(t) … 𝛽(t)

𝛽(t) … 𝛽(t)

𝛽(t) … 𝛼̄M(t) + 𝛽(t)

⎞⎟⎟⎠
,

U(t) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(t)

x2(t)

…

xN(t)

y1(t)

y2(t)

…

yM(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C1(t) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1(t)

c2(t)

…

cN(t)

c̄1(t)

c̄2(t)

…

̄cM(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S1(t) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1(t)𝛼1(t) + 𝜉(t)𝛽(t)

s2(t)𝛼2(t) + 𝜉(t)𝛽(t)

…

sN(t)𝛼N(t) + 𝜉(t)𝛽(t)

𝛼̄1(t)𝜉1(t)

𝛼̄2(t)𝜉2(t)

…

𝛼̄M(t)𝜉M(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and Γ1(t) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛾1(t)

𝛾2(t)

…

𝛾N(t)

𝛾̄1(t)

𝛾̄2(t)

…

𝛾̄M(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(47)Ω1(t)U(t) = −C1(t) − �e�P(t−T)Γ1(t) + S1(t)

(48)
U(t) = −Ω1(t)−1C1(t) − �e�P(t−T)Ω1(t)−1Γ1(t) + Ω1(t)−1S1(t).
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The equation of P boils down to:

and this differential equation has a closed form given by:

Proof of Theorem 4

The proof of this theorem is very similar to the one of Theo-
rem 1, and it can be obtained from it by introducing a time 
shift of L units.

Proof of Theorem 5

The proof of this theorem is very similar to the one of Theo-
rem 3, and it can be obtained from this one by adding an 
exogenous inventory variable.
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